Linear multistep methods with mildly varying coefficients
نویسندگان
چکیده
منابع مشابه
Linear Multistep Methods page 1 Linear Multistep Methods
page 1 Linear Multistep Methods Note: The authoritative reference for the material on convergence is the book by Peter Henrici, Discrete Variable Methods in Ordinary Differential Equations , Wiley, 1962. The best reference on absolute stability is the book by Jack Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, 1991. We consider the Initial Value Problem (IVP) y′ = f(x, y),...
متن کاملProbabilistic Linear Multistep Methods
We present a derivation and theoretical investigation of the Adams-Bashforth and Adams-Moulton family of linear multistep methods for solving ordinary differential equations, starting from a Gaussian process (GP) framework. In the limit, this formulation coincides with the classical deterministic methods, which have been used as higher-order initial value problem solvers for over a century. Fur...
متن کاملMonotonicity-Preserving Linear Multistep Methods
In this paper we provide an analysis of monotonicity properties for linear multistep methods. These monotonicity properties include positivity and the diminishing of total variation. We also pay particular attention to related boundedness properties such as the total variation bounded (TVB) property. In the analysis the multistep methods are considered in combination with suitable starting proc...
متن کاملLinear Multistep Methods for Impulsive Differential Equations
This paper deals with the convergence and stability of linear multistep methods for impulsive differential equations. Numerical experiments demonstrate that both the mid-point rule and twostep BDFmethod are of order p 0when applied to impulsive differential equations. An improved linear multistep method is proposed. Convergence and stability conditions of the improved methods are given in the p...
متن کاملStability of implicit - explicit linear multistep methods
In many applications, large systems of ordinary di erential equations (ODEs) have to be solved numerically that have both sti and nonsti parts. A popular approach in such cases is to integrate the sti parts implicitly and the nonsti parts explicitly. In this paper we study a class of implicit-explicit (IMEX) linear multistep methods intended for such applications. The paper focuses on the linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1970
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1970-0280010-7